A better starting point for exploring entanglement

Quantum entanglement is perhaps one of the most intriguing phenomena known to physics. It describes how the fates of multiple particles can become entwined, even when separated by vast distances. Importantly, the probability ...

Stimulating resonance with two very different forces

Widely studied in many different fields, 'nonlinear' systems can display excessively dramatic responses when the forces which cause them to vibrate are changed. Some of these systems are sensitive to changes in the very parameters ...

Simple self-charging battery offers power solutions for devices

A new type of battery combines negative capacitance and negative resistance within the same cell, allowing the cell to self-charge without losing energy, which has important implications for long-term storage and improved ...

CaPtAs: A new noncentrosymmetric superconductor

A research group from Zhejiang University in China has found that the noncentrosymmetric compound CaPtAs is a superconductor, which shows evidence of unconventional properties. This compound provides a new opportunity for ...

Radio waves detect particle showers in a block of plastic

When neutrinos crash into water molecules in the billion-plus tons of ice that make up the detector at the IceCube Neutrino Observatory in Antarctica, more than 5,000 sensors detect the light of subatomic particles produced ...

Cooling of a trapped ion to the quantum regime

Neutral atoms and charged ions can be cooled down to extremely low temperatures (i.e., to microkelvins, 1 millionth of a degree above absolute zero) using laser techniques. At these low temperatures, the particles have often ...

page 2 from 1987