This Science News Wire page contains a press release issued by an organization and is provided to you "as is" with little or no review from Science X staff.

First demonstration of a 1 petabit per second network node

October 17th, 2019
First demonstration of a 1 petabit per second network node
Experimental setup Credit: National Institute of Information and Communications Technology

The Network System Research Institute at the National Institute of Information and Communications Technology (NICT) has developed and demonstrated the first large-scale optical switching testbed capable of handling 1 Petabit per second optical signals. 1 Petabit per second is equivalent to the capacity to send 8K video to 10 million people simultaneously.

This demonstration made use of state-of-the-art large-scale and low-loss optical switches based on MEMS technology, three types of next-generation spatial-division multiplexing fibers, and included the routing of signals with capacities from 10 Terabit per second to 1 Petabit per second. This corresponds to more than 100 times the capacity of currently available networks.

This is a major step forward towards the early implementation of the petabit-class backbone optical networks capable of supporting the increasing requirements of internet services such as broadband video streaming, 5G mobile networks or Internet of Things. As such, the results of this demonstration were acknowledged by the scientific community with a post-deadline presentation at the 45th European Conference on Optical Communication (ECOC 2019).

Background

NICT has collaborated extensively with academia and industry to develop new types of optical fiber technologies and provide petabit-class communications for short and long reach backbone networks as well as datacenter networks. These included achievements such as the record petabit-class transmission in a single fiber (September 2015, September 2018), and the longest link using spatial division multiplexing amplifiers (March 2019).

However, petabit-class transmission requires petabit-class switching technologies to manage and reliably direct large amounts of data through complex networks. Up to now, such technologies have been beyond reach because the existing approaches are limited by complexity and/or performance.

Achievements

NICT has successfully implemented a network demonstration using state-of-the-art large-scale spatial optical switching, aiming at petabit-class next-generation optical networks using spatial-division multiplexing. The experimental network testbed supported data rates from 10 Terabit per second up to 1 Petabit per second over 3 types of next-generation multicore fibers and included practical requirements of real networks, such as protection switching. The total capacity of the network was 1 Petabit per second, corresponding to simultaneous 8K-TV broadcasting for 10 million people. The system was demonstrated in 4 fundamental scenarios that constitute the building blocks of the next-generation optical fiber networks.

  1. Optical switching of 1 Petabit per second of data
  2. Redundant configuration to support network failures or fiber breaks
  3. Branching of 1 Petabit per second signals into different types of optical fibers with various capacities
  4. Management of lower-capacity signals (10 Terabit per second) within the 1 Petabit per second network

The outcomes of this demonstration were awarded with a post-deadline presentation at the 45th European Conference on Optical Communication (ECOC 2019), held in Dublin, Ireland in September 26. This is one of the largest international conferences in the field of optical fiber communications.

Provided by National Institute of Information and Communications Technology (NICT)

Citation: First demonstration of a 1 petabit per second network node (2019, October 17) retrieved 28 March 2024 from https://sciencex.com/wire-news/332766078/first-demonstration-of-a-1-petabit-per-second-network-node.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.